
KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

Marius Hillenbrand

Operating Systems Group, Department of Computer Science

www.kit.edu

Introduction to the C Programming Language

Operating Systems Group

Department of Computer Science

2

Introduction

C

A general-purpose language

Developed beginning of 1970s

Designed for implementing system software

Widely used programming language

Notable properties

Procedural language

Not type-safe, memory access and addressing via pointers

Compound operators (++, --, +=, >>=, …)

Compact notation:

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

int c=0,b;

while((b=fgetc(f))!=EOF)c+=(b==10)?1:0;

fseek(f,0,SEEK_SET);

Operating Systems Group

Department of Computer Science

3

C is

Stonehenge

Why C ?

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Operating Systems Group

Department of Computer Science

4

Why C ?

Yes, that old.

Exercise: Read up on the history of C

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Operating Systems Group

Department of Computer Science

5

C is

Stonehenge

not type-safe

not object-oriented

error-prone and tedious

… PHP, Python, Java,
Scala, C++, C#, Groovy,
sooo much better

Why C ?

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

NULL

Operating Systems Group

Department of Computer Science

6

But C is also

powerful

efficient

close to the machine

standards-compatible, portable

widely used for
OSes, embedded systems

libraries

anywhere where (space/time)
efficiency matters

foundation for many follow-on languages
(C++, C#, Java)

Why C ?

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

x86 ARM

Operating Systems Group

Department of Computer Science

7

Introduction / Getting Help

This lecture is NOT a complete reference to C.

I assume you already know some Java or C.

During assignments, get help as you need:

Library calls/ system calls, parameters, return values

UNIX man(ual) page. Start with man man.

man page sections (man 1 ls):

1 commands (ls, gcc, gdb)

2 system calls (read, gettimeofday)

3 library calls (printf, scanf)

5 file formats (passwd)

7 miscellaneous (signal)

Search for man-pages: apropos <word>.

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Operating Systems Group

Department of Computer Science

8

Introduction / Getting Help

This lecture is NOT a complete reference to C.

I assume you already know some Java or C.

During assignments, get help as you need:

Library calls/ system calls, parameters, return values

UNIX man(ual) page. Start with man man.

man page sections (man 1 ls):

1 commands (ls, gcc, gdb)

2 system calls (read, gettimeofday)

3 library calls (printf, scanf)

5 file formats (passwd)

7 miscellaneous (signal)

Search for man-pages: apropos <word>.

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Operating Systems Group

Department of Computer Science

9

Getting Help

C syntax/semantics

“The C Programming Language” by Kernighan and Ritchie
(“K& R”)

Thorough guide to UNIX programming

“Advanced Programming in the UNIX Environment” by
Stevens and Rago.

KIT library has 35 copies of both books

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Operating Systems Group

Department of Computer Science

10

#include <stdio.h>
int main (void)
{

printf (”Hello World!\n”);
return 0;

}

Hello World!

#include preprocessor (inserts contents of file).

stdio.h contains the declaration of printf.

main program starts here.

void keyword for absence of arguments

{ } basic blocks / scope delimiters.

printf prints to the terminal.

‘\n’: newline character.

return leave function, give return value.

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Operating Systems Group

Department of Computer Science

11

$ gcc helloworld.c –o helloworld
$./helloworld
Hello World!

Compiling and running Hello World!

Compilation:

Generating binary executable from source code

Comprises two main steps (besides preprocessor)

Generating binary object file for each source code file

Linking binary object files, resolving all addresses

Execution

Operating system launches binary executable

Contains processor instructions (arch-specific, eg. x86)

May load libraries as needed

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Operating Systems Group

Department of Computer Science

12

char: one byte, usually for characters

(1970: ASCII was fine)

int: usually 4 bytes, holds integers

float: 4 bytes, floating point number

double: 8 bytes, double precision floating point number

char c = 5; char c = ‘a’;

Basic Data Types

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

int i = 5; int i = 0xf; int i = ‘a’;

float f = 5; float f = 5.5; double d = 5.98798;

07
0 0 0 0 0 1 10

0
000 0 1 10 00 00 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0

31

0
mantissas exp

31

[s] 1.[mantissa] x 2[exp]

Operating Systems Group

Department of Computer Science

13

Examples

integer logic, no decimal places, no rounding

decimal logic for float and double

remember, chars are one-byte numbers

“character” meaning is interpreted by the console
(ASCII table, ’a’ = 97)

int i = 5/2; // i = 2;

Basic Data Types

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

float f = 5.0f/2; // f = 2.5f

char a = ‘a’/2; // a = 97 / 2 = 48

Operating Systems Group

Department of Computer Science

14

Can specify properties via keywords:

signed or unsigned arithmetic (note the wrap)

short or long word size

note: ranges and #bits vary with architecture (and OS)

signed vs. unsigned

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

signed int i = -5; // i=-5 (Two’s complement)
unsigned int j = 100 - 200; // j=4294967196

short int i = 1024; //-32768…32767
long int j = 1024; // -2147483648…2147483647

short int int long int long long

32-bit architecture 16 32 32 64

64-bit architecture 16 32 64 128

Operating Systems Group

Department of Computer Science

15

Use sizeof to determine variable size in bytes

Use types from inttypes.h to be sure about sizes

variable is constant, modification will raise compiler error

variable volatile, may be modified elsewhere

for example by different program in shared memory

important for CPU caches, registers and assumptions thereof

sizeof int; sizeof long int; //4 and 4 on x86 32-bit

#include <inttypes.h>
int8_t i; uint32_t j;

sizeof, inttypes.h, const, volatile

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

const int i=5;

volatile int i=5;

Operating Systems Group

Department of Computer Science

16

global variables (e.g., int m)

lifetime: while program runs

placed on pre-defined place in memory

basic block / function-local variables (e.g., int i)

lifetime: during invocation of myroutine

placed on stack or in registers

local vs. global variables

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

int m; // global variable
// (outside a function)

int myroutine(int j) {
int i=5;// local variable
i = i+j;
return i;

}

Operating Systems Group

Department of Computer Science

17

basic block / function-local variables (eg. int i)

placed on stack or in registers

not so if variable static

(if applied to local variables within function or basic block)

makes variable persistent across multiple invocations

lifetime: while program runs, like global variables

local variables vs. static

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

int myroutine(int j) {
int i=5;
i = i+j;
return i;

}

k = myroutine(1); // k = 6;
k = myroutine(1); // k = 6:

int myroutine(int j) {
static int i=5;
i = i+j;
return i;

}

k = myroutine(1); // k = 6;
k = myroutine(1); // k = 7:

Operating Systems Group

Department of Computer Science

18

In C, characters are encoded as 1-byte “numbers” (char)

Console driver translates those numbers into characters

Uses ASCII table for that purpose

Library call ‘printf’ from stdlib.h to print strings

Comprised of a format string and arguments

Format string may contain format identifiers (%d)

man 3 printf

Characters, strings, printf

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

int i=5; float f=2.5;
printf(“The numbers are i=%d f=%f”, i, f);

char c = ‘a’;
putc(c);

printf(“Hello”);

Operating Systems Group

Department of Computer Science

19

remember, characters are just “numbers”

ASCII table translates those numbers
(man ascii)

Assign characters to variables via single quote ′

Can calculate with characters

Special ASCII characters encoded via leading backslash

Characters, strings, printf

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

char c = ‘a’;
char c = ‘a’ + 1; // c = ‘b’, since ‘b’ follows ‘a’ in ASCII

\n newline \” double quote
\t tab \0 NULL, end of string
\’ single quote

Operating Systems Group

Department of Computer Science

20

remember, characters are just “numbers”

ASCII table translates those numbers
(man ascii)

Assign characters to variables via single quote ′

Can calculate with characters

Special ASCII characters encoded via leading backslash

Characters, strings, printf

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

char c = ‘a’;
char c = ‘a’ + 1; // c = ‘b’, since ‘b’ follows ‘a’ in ASCII

\n newline \” double quote
\t tab \0 NULL, end of string
\’ single quote

Operating Systems Group

Department of Computer Science

21 Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Operating Systems Group

Department of Computer Science

22

structure: Collection of named variables of different types

union: single variable that can have multiple types

Note the difference between struct and union!

sizeof c = 2*sizeof int vs. sizeof lf = max(sizeof float, sizeof long)

Members are accessed by name using . operator

0
y

31

x

Compound data types

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

struct coordinate {
int x;
int y;

}

struct coordinate c;
c.x = 5;
c.y = 6;

union longorfloat {
long l;
float f;

}

union longorfloat lf;
lf.l = 5;
lf.f = 6.586;

0
l / f

31

5
6

56.586

Operating Systems Group

Department of Computer Science

23

Functions encapsulate functionality (reuse)

Functions structure code (reduced complexity)

Functions must be declared and defined

Declaration states the signature (return type, name, params)

<return type> function name ([<arg1> [, <arg2>[. . .]]]);

Definition states the implementation

Definition implicitly declares the function

Functions

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

unsigned int sum(unsigned int a, unsigned int b) {
return a+b;

}

unsigned int sum(unsigned int a, unsigned int b);

unsigned int sum(unsigned int a, unsigned int b) {
return a+b;

}

Operating Systems Group

Department of Computer Science

24

Example: declaration of function in other file

Declaration vs. definition

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

int sum(int a, int b)
{

return a+b;
}

#include <stdio.h>

int main(void)
{

printf (”%d\n”, sum(1,2));
return 0;

}

main.csum.c

int sum(int a, int b);

Operating Systems Group

Department of Computer Science

25

Use header file for frequently used declarations

mymath.h

sum.c main.c

Declaration vs. definition

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

#include “mymath.h”

int sum(int a, b)
{

return a+b;
}

#include <stdio.h>
#include “mymath.h”

int main(void)
{

printf (”%d\n”, sum(1,2));

return 0;
}

int sum(int a, int b);

Operating Systems Group

Department of Computer Science

26

Use extern to declare global variables defined elsewhere

mymath.h

sum.c main.c

Declaration vs. definition

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

#include “mymath.h”

float pi=3.1415927;
int sum(int a, b)
{

return a+b;
}

#include <stdio.h>
#include “mymath.h”

int main(void)
{

printf (”%d\n”, sum(1,2));
printf (”%f\n”, pi);
return 0;

}

int sum(int a, int b);
extern float pi;

Operating Systems Group

Department of Computer Science

27

Use static to limit scope to current file
(when applied to global variables and functions)

mymath.h

sum.c main.c

Static declaration

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

#include “mymath.h”

static float pi=3.1415927;
int sum(int a, b)
{

return a+b;
}

#include <stdio.h>
#include “mymath.h”

int main(void)
{

printf (”%d\n”, sum(1,2));
printf (”%f\n”, pi);
return 0;

}

int sum(int a, int b);
extern float pi;

X

Operating Systems Group

Department of Computer Science

28

Use static to limit scope to current file
(when applied to global variables and functions)

mymath.h

sum.c main.c

Static declaration

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

#include “mymath.h”

static float pi=3.1415927;
int sum(int a, b)
{

return a+b;
}

#include <stdio.h>
#include “mymath.h”
static float pi=3.1415927;
int main(void)
{

printf (”%d\n”, sum(1,2));
printf (”%f\n”, pi);
return 0;

}

int sum(int a, int b);

√

Operating Systems Group

Department of Computer Science

29

stack

data

code

heap

j

Stack/Heap/Data Segments and Variables

A running program

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Stack:

Local Variables

Data Segment:

static / global

variables

Code:

functions

Heap: variables

created at runtime

via malloc()/free()

int myroutine(int j) {
int i=5;
i = i+j;
return i;

}

k = myroutine(1);
k = myroutine(1);

i

// 1

// 5// 6

SP

SP

SP

Operating Systems Group

Department of Computer Science

30

j

Stack/Heap/Data Segments and Variables

A running program

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Stack:

Local Variables

Data Segment:

static / global

variables

Code:

functions

Heap: variables

created at runtime

via malloc()/free()

int myroutine(int j) {
int i=5;
i = i+j;
return i;

}

k = myroutine(1);
k = myroutine(1);

i

// 1

// 5// 6

SP

SP

SP

Operating Systems Group

Department of Computer Science

31

i

Stack/Heap/Data Segments and Variables

A running program

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Stack:

Local Variables

Code:

functions

Heap: variables

created at runtime

via malloc()/free()

int myroutine(int j) {
int i=5;
i = i+j;
return i;

}

k = myroutine(1);
k = myroutine(1);

j // 1

// 5// 6

SP

SP

static int i = 5;

Data Segment:

static / global

variables

Operating Systems Group

Department of Computer Science

32

i

Stack/Heap/Data Segments and Variables

A running program

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Stack:

Local Variables

Code:

functions

Heap: variables

created at runtime

via malloc()/free()

int myroutine(int j) {
int i=5;
i = i+j;
return i;

}

k = myroutine(1);
k = myroutine(1);

j // 1

// 6

SP

SP

static int i = 5;

Data Segment:

static / global

variables

// 7

Operating Systems Group

Department of Computer Science

33

NO function overloading in C
sum.c:8:5: error: conflicting types for ‘sum’
sum.c:4:5: note: previous definition of ‘sum’ was here

Use arrays or pointers

Function overloading

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

int sum(int a, int b) {
return a+b;

}

int sum(int a, int b, int c) {
return a+b+c;

}
X

int sum(int *summands, int size) {
int sum = 0;
int s = 0;
for (s=0; s < size; s++)

sum += *(summands+s);
return sum;

}

Operating Systems Group

Department of Computer Science

34

Pointer: data type pointing to a value

pointer to an integer variable

holds a memory address to a variable of type int

can be assigned the address of an existing variable

typically has a type, void denotes absence of type

can be dereferenced

int *p;
struct coordinate *c;
void *r;

int *p;

Pointer

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

int a = 5;
int *q = &a;

int i = *q; // c = dereference(q) => 5
int x = (*c).x; // x = dereference(c), member x
int x2 = c->x; // short form of (*c).x

Operating Systems Group

Department of Computer Science

35

Pointer

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Pointer: data type pointing to a value Main memory

int a=5;

0…3

40…43aint *p = &a;

p

int *q = 32;
32…35

q
int b = a+1;

int c = *p;

int d = (*p)+2;

int e = *(p+2);

int *r = p+1;

b
c

e

d

r

5
5

6

6

101010

44

40

7

32

Operating Systems Group

Department of Computer Science

36

Pointer (explanations)

A: integer variable initialized with value 5

P: pointer to an integer variable, initialized to point to variable a

Q: pointer to an integer variable, initialized with address 32

B: integer variable, initialized to the value of a + 1

C: integer variable, initialized to dereference(p), that is the value of the
variable at the address in pointer p

D: integer variable, initialized to the sum of dereference(p) and 2

R: pointer to an integer variable, initialized by pointer arithmetic:
pointing to the next element after the one p is pointing to. As both p
and r are pointers to ints (4B), the address in r is that in p + 4

E: integer variable. Here, we do pointer arithmetic before
dereferencing: skip two elements (ints!) forward from the one that p is
pointing to, dereference, and initialize e with that value

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Operating Systems Group

Department of Computer Science

37

Example: linked list

Linked list via next-pointer

40

Main memory

456

123

0…3

40…43second

first

struct ll {
int item;
struct ll *next;

};

struct ll first;
first.item = 123;

struct ll second;
second.item = 456;
first.next = &second;

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Operating Systems Group

Department of Computer Science

38

Array: fixed number of variables continuously laid out in memory

declare an array (and reserve space in memory)

assign 25 to last, 24 to first element

initialize array, implicitly stating length

NO bounds checking at compile or run time
(but may raise protection fault)

declare pointer to array; address elements via pointer

Arrays

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

int A[5];

A[4] = 25; A[0] = 24;

C[654] = ‘Z’; C[i++]

char C[] = { ‘a’, 5, 6, 7, ‘B’};

char *p = C;
*(p+1) = ‘Z’; p[3] = ‘B’; char b = *p; // ‘a’

Operating Systems Group

Department of Computer Science

39

Array vs. pointer

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Main memoryPointer: data type pointing to a value

int A[3] = { 4, 5 , 6 };

0…3

int *p = A;

A[2] = 7;
32…35A

p[2] = 8;

A = A + 1;

p = p + 1;

*p = 9;

p 20…23

√
X 32

5
4

67810

36

p[1] = 10;

9

Operating Systems Group

Department of Computer Science

40

String: array of characters terminated by NULL (0)

declare and initialize string

declare const char pointer to string

valid assignment

both fail at compile time (p const char)

Remember: pointer data type pointing to a value

Strings

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

char A[] = { ‘J’, ‘a’, ‘n’, ‘\0’ };
char A[] = “Jan”; // prepared these slides!

const char *p= “Jan”;

Main memory

0

32…35

A

p

3

read

writep[2] = ‘b’;
*(p+2) = ‘b’; X

A[2] = ‘b’; √ 0

‘a’
‘n’

‘J’

0

‘a’
‘n’

‘J’

read

only

‘b’

Operating Systems Group

Department of Computer Science

41

can be found in a UNIX header file

length of a string (up to n)

compare two strings (up to n), return >0,0,<0

copy a string (up to n)

tokenize a string (e.g., split line into words)

Common string functions

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

#include <string.h>

size_t strnlen(const char *s, size_t maxlen)

int strncmp(const char *s1, const char *s2, size_t n);

int strncpy(char *dest, const char *src, size_t n);

char *strtok(char *str, const char *delim);

Operating Systems Group

Department of Computer Science

42

My first C routine

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

char* strncpy(char *dest, const char *src, size_t n){

size_t i; // return type of sizeof, defined in stddef.h

for (i = 0 ; i < n && src[i] != '\0' ; i++)
dest[i] = src[i];

for (; i < n ; i++)
dest[i] = '\0';

return dest;
}

Copies string src to dest up to n

Uses a “for”-loop that

ends when n has been reached or src ends (whichever first)

copies, character-wise, src into dest

Uses a second “for”-loop that zeroes out the rest of dest

Operating Systems Group

Department of Computer Science

43

arithmetic operators and their short forms

note the difference between pre- and post-increment

logical operators often used for bit, address calculations

Arithmetic and bitwise operators

a + b a - b a * b a / b a % b

a++; a--; a+=5; a*=3; a %=1;

a=5;
if (a++ == 5) printf(“Yes”);

a=5;
if (++a == 5) printf(“Yes”);

a // 507 0 0 0 0 0 1 0 1

0 b // 67 0 0 0 0 0 1 1 0

a | b // 707 0 0 0 0 0 1 1 1

07 a >> 1 // 20 0 0 0 0 0 1 0

a & b // 4
07 0 0 0 0 0 1 0 0 0 a ^ b // 3

07 0 0 0 0 0 1 1

a & b a | b a >> b a << b a ^ b ~a

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Operating Systems Group

Department of Computer Science

44

mask out bit number 5

C routine using bit logic

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

uint8_t bit_function(uint8_t val) {

uint8_t mask = ~(1<<5);
return val & mask;

}

7 10 0 0 0 0 0 0 1 0

1<<57 0 0 1 0 0 0 0 0 0

~(1<<5) // mask7 1 1 0 1 1 1 1 1 0

Val & mask // 17 7 0 0 0 1 0 0 0 1 0

val // 49 7 0 0 1 1 0 0 0 1 0

Operating Systems Group

Department of Computer Science

45

{} only needed for multiple statements

do-while-statement executed at least once

Loops, if-then-else

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

if (a == b)
printf(“Equal”);
else {
printf(“Different”); return 0;
}

if (a == b)
printf(“Equal”);
else
printf(“Different”);

int i;
for (i=10; i>=10; i--)
printf(“%d”, i+1);

int i=0;
do
printf(“bar”);

While(i++ != 0);

int i=10;
while (i--)
printf(“foo”);

for (;;) {
i = read();
if (i>0)
break;

if (i==0)
continue;

do_something();
}

with for-loops, can leave out any
of initializer/expression/modifier

use break and continue to
exit/skip

Operating Systems Group

Department of Computer Science

46

Expressions

Operators and operands build expressions

Assignments are expressions

Comparisons are expressions

(n++ < 0) extends to 1 if n < 0 and to 0 otherwise,
then increments n

Note the difference between == and = !

Expressions can be nested (last example)

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

if (<expression>)
while (<expression>)
for (<initializer>; <expression>; <modifier>)

if (n = 1) while (n--) for (n=10;n>0;n-=c)

if (n > 0) while (n++ < 0) while (n != 0)

if (n == 0) if (n = 0) if ((n = read()) < 0)

Operating Systems Group

Department of Computer Science

47

Logical operators

|| logical OR

&& logical AND

! logical NOT

Note: operators are evaluated in non-strict manner

First example: b == 0 never evaluated

Second example: b == read() never evaluated

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

if (a == 0 || b == 0) if (a > 0 && b < 0) if (!(a == 0))

a = 0; b = 1;
if (a == 0 || b == 0)

a = 0; b = 1;
if (a != 0 && (b == read()))

Operating Systems Group

Department of Computer Science

48

All C operators (in order of precedence)

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

() [] -> .

! ++ -- +y -y *z &= (type) sizeof

* / %

+ -

<< >>

< <= > >=

== !=

&

^

|

&&

||

? :

= += -= *= /= %= &= ~= |= <<= >>=

,

Operating Systems Group

Department of Computer Science

49

Switch/case

Use switch/case to
differentiate multiple cases.

Note: need break statement to
exit switch-loop

If not given, code will fall
through

Example: with a == ‘2’, code
will execute both handle_2()
and handle_other()

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

char a = read();

switch (a) {
case ‘1’:
handle_1();
break;

case ‘2’:
handle_2();
break;

default:
handle_other();
break;

}

//break

Operating Systems Group

Department of Computer Science

50

Explicit type casting (possibly losing precision)

Some types are casted implicitly (if no precision loss)

Watch out for precedence!

Casting pointers changes address calculation!

Type casting

int i = 5;
float f = (float) i;

int i;
char c = (char) i;

char c = 5;
int i = c;

float f = 0.555f;
double d = f;

int i = 5;
char *p = (char *) &i;
*(p+1) = 5;

int i = 5;
float f = (float) (i / 2);

int i = 5;
float f = ((float) i) / 2;

5 0

3

5

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Operating Systems Group

Department of Computer Science

51

Type casting

Types form a hierarchy

“wider” vs. “shorter” types

unsigned int is wider than signed int

Operators cast parameters to widest type

Take care: cast for assignment after cast for operator

i gets cast to “wider” unsigned int

j is 1073741819

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

char c = 5; int i = 2;
int j = c + i; // c gets cast to int first

unsigned int u = 4;
int i = -20;
int j = i / u;

Operating Systems Group

Department of Computer Science

52

C preprocessor

C preprocessor modifies source code

modified before compilation

based on preprocessor directives (usually start with #)

copies (literally!) contents of file to current file

only works with strings in the source file

completely ignores semantics of C

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

#include <stdio.h>
#include “mystdio.h”

Operating Systems Group

Department of Computer Science

53

System include; search for file in:
/usr/local/include
libdir/gcc/target/version/include
/usr/target/include
/usr/include

target: arch-specific path (i686-linux-gnu, x86_64-linux-gnu)
version: gcc version (4.2.4, 4.6.1)

Can add own paths with –I<dir>

Local include; search in directory containing the current file

Then in the paths specified by –i<dir>

Then in system include paths described above

Preprocessor search paths

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

#include <file>

#include “file”

Operating Systems Group

Department of Computer Science

54

C preprocessor

defines introduce replacements strings

Can have arguments (a,b, str)

Note: all based on string replacement!

defines can help structuring the code

quickly switch on/off include based on architecture or config

often leads to source code cluttering

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

#define PI 31415926535897
#define TRUE (1)
#define max(a,b) ((a > b) ? (a) : (b))
#define panic(str) do { printf(str); for (;;) } while(0);

#ifdef __unix__
include <unistd.h>
#elif defined _WIN32
include <windows.h>
#endif

#define DEBUG
#ifdef DEBUG
#define TRACE(x) printf(x)
#else
#define TRACE(x)
#endif

Operating Systems Group

Department of Computer Science

55

C preprocessor operation

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

C preprocessor modifies source code

modified before compilation

Source

file.c

Pre-

processor

temp

file
Compiler

object

file

file.o

Operating Systems Group

Department of Computer Science

56

C preprocessor substitution

maintains list of macros

replaces each occurrence of a macro with its contents

suppresses directives and comments in output

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

// preprocessor input
#define PI 3.141
#define DEBUG

PI 3.141

DEBUG

printf(“%f“, radius * PI); printf(“%f“, radius * 3.141);

preprocessor output

Operating Systems Group

Department of Computer Science

57

C preprocessor conditionals

maintains list of macros

conditionally includes or suppresses code

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

// preprocessor input
#define PI 3.141
#define DEBUG

PI 3.141

DEBUG

int i = j + 15;
#ifdef DEBUG
printf(“i is %d\n”, i);
#endif

int i = j + 15;

preprocessor output

printf(“i is %d\n”, i);

Operating Systems Group

Department of Computer Science

58

C preprocessor conditionals

maintains list of macros

conditionally includes or suppresses code

Supports if / else / else if constructs and logical operators

#if defined(DEBUG_LEVEL) && DEBUG_LEVEL > 2

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

// preprocessor input
#define PI 3.141

PI 3.141

int i = j + 15;
#ifdef DEBUG
printf(“I is %d\n”, i);
#endif
float f = i * PI;

int i = j + 15;

preprocessor output

float f = i * PI;

Operating Systems Group

Department of Computer Science

59

Predefined macros

compiler command line arguments

system-specific

__unix__

_WIN32

__STDC_VERSION__

useful preprocessor variables

__LINE__

__FILE__

__DATE__

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

$ gcc –DDEBUG –o myprog myprog.c

#define ASSERT(x) if(!(x)) { \
printf(“Assertion failed in”\

“file %s, line %d”, \
__FILE__, __LINE__); \

exit(-1); }

Operating Systems Group

Department of Computer Science

60

Some notes on generated code

A program marginally more complex than Hello World

Unsurprising result if compiled and run

Let’s (briefly) look at the generated code

objdump decodes and disassembles UNIX binaries
Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

#include <stdio.h>

int myvar = 5;
int main(void) {

myvar += 5;
printf("%d\n", myvar);
return myvar;

}

$ gcc –g –o myvar myvar.c
$./myvar
10

$ objdump –dhxS myvar

Operating Systems Group

Department of Computer Science

61

Some notes on generated code

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

myvar: file format elf32-i386
Myvar
...
SYMBOL TABLE:
0804a020 g O .data 00000004 myvar
0804843c g F .text 00000032 main
...
main():
/home/mhillen/tmp/myvar.c:5
#include <stdio.h>
int myvar = 5;
int main(void) {
804843c: 55 push %ebp
804843d: 89 e5 mov %esp,%ebp
804843f: 83 e4 f0 and $0xfffffff0,%esp
8048442: 83 ec 10 sub $0x10,%esp
/home/mhillen/tmp/myvar.c:6

myvar += 5;
8048445: a1 20 a0 04 08 mov 0x804a020,%eax
804844a: 83 c0 05 add $0x5,%eax
804844d: a3 20 a0 04 08 mov %eax,0x804a020
/home/mhillen/tmp/myvar.c:7

printf("%d\n", myvar);
8048452: a1 20 a0 04 08 mov 0x804a020,%eax
8048457: 89 44 24 04 mov %eax,0x4(%esp)
804845b: c7 04 24 00 85 04 08 movl $0x8048500,(%esp)
8048462: e8 a9 fe ff ff call 8048310 <printf@plt>
/home/mhillen/tmp/myvar.c:8

return myvar;
8048467: a1 20 a0 04 08 mov 0x804a020,%eax
/home/mhillen/tmp/myvar.c:9
}

 Function and variable

names

 Translate to addresses

 Code segment is called

.text

 Read, modify,

write myvar

 Function

call

Operating Systems Group

Department of Computer Science

62

Compiling and linking

myvar.c myvar2.c

Compiles and links two source files

gcc –c compiles but doesn’t link

generates two independent object files

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

#include <stdio.h>

int myvar = 5;
int main(void) {

myvar += 5;
printf("%d\n", myvar);
return myvar;

}

#include <stdio.h>

extern int myvar;
int run_myvar2() {

myvar += 10;
printf("%d\n", myvar);
return myvar;

}

$ gcc –o myvar myvar.c myvar2.c

$ gcc –c myvar.c myvar2.c
$ ls *.o
myvar.o myvar2.o

Operating Systems Group

Department of Computer Science

63

Compiling and linking

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

myvar2.o: file format elf32-i386
...
SYMBOL TABLE:
00000000 *UND* 00000000 val
... 00000000 <run_myvar2>:

0:
55 push %ebp
1: 89 e5 mov %esp,%ebp
3: 83 ec 18 sub $0x18,%esp
6: a1 00 00 00 00 mov 0x0,%eax

7: R_386_32 val
b: 83 c0 05 add $0x5,%eax
e: a3 00 00 00 00 mov %eax,0x0

f: R_386_32 val
13: 8b 15 00 00 00 00 mov 0x0,%edx

15: R_386_32 val
19: b8 00 00 00 00 mov $0x0,%eax

1a: R_386_32 .rodata
1e: 89 54 24 04 mov %edx,0x4(%esp)
22: 89 04 24 mov %eax,(%esp)
25: e8 fc ff ff ff call 26 <run_myvar2+0x26>

26: R_386_PC32 printf
2a: a1 00 00 00 00 mov 0x0,%eax

2b: R_386_32 val
2f: c9 leave
30: c3 ret

Object file contains code, space requirements

External symbols unresolved (00 00..)

Final addresses unresolved

Operating Systems Group

Department of Computer Science

64

Linking

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

Linker (ld) “glues together” object files

Needs arch-/OS-specific params, invoke via gcc

This is (sort of) how gcc invokes ld

$ ld ... myvar.o myvar2.o –o myvar

$ gcc myvar.o myvar2.o –o myvar

--build-id --eh-frame-hdr -m elf_x86_64 --hash-style=gnu -dynamic-linker /lib64/ld-linux-
x86-64.so.2 -z relro -o myvar /usr/lib/x86_64-linux-gnu/gcc/x86_64-linux-
gnu/4.5.2/../../../crt1.o /usr/lib/x86_64-linux-gnu/gcc/x86_64-linux-
gnu/4.5.2/../../../crti.o /usr/lib/x86_64-linux-gnu/gcc/x86_64-linux-gnu/4.5.2/crtbegin.o
-L/usr/lib/x86_64-linux-gnu/gcc/x86_64-linux-gnu/4.5.2 -L/usr/lib/x86_64-linux-
gnu/gcc/x86_64-linux-gnu/4.5.2/../../.. -L/usr/lib/x86_64-linux-gnu myvar2.o myvar.o -
lgcc --as-needed -lgcc_s --no-as-needed -lc -lgcc --as-needed -lgcc_s --no-as-needed
/usr/lib/x86_64-linux-gnu/gcc/x86_64-linux-gnu/4.5.2/crtend.o /usr/lib/x86_64-linux-
gnu/gcc/x86_64-linux-gnu/4.5.2/../../../crtn.o

Operating Systems Group

Department of Computer Science

65

Libraries

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

$ gcc math.c –o math
/tmp/ccsGM8Gi.o: In function `main':
math.c:(.text+0x34): undefined reference to `sqrt'
collect2: ld returned 1 exit status

#include <math.h>
#include <stdio.h>

int main(void) {
float f = 0.555f;
printf("%f", sqrt(f*4));
return 0;

}

Math header file contains declarations

But not necessarily all definitions!

Need to link math library
$ gcc math.c –o math -lm

Operating Systems Group

Department of Computer Science

66

Libraries

Technically, a library is

a collection of functions

contained in object files

glued together in a dynamic / static library

$gcc math.c -lm

relocate

resolve

0…3

LIB

Code

Data

Marius Hillenbrand, Jan Stoess – Introduction to C, WT 16/17

